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A LIAPUNOV FUNCTIONAL FOR

LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS
A

D.L.Abrahamson and E.F. Infante

ABSTRACT

Liapunov functionals of quadratic form have been used extensively

for the study of the stability properties of linear ordinary, functional

and partial differential equations. In this paper, a quadratic functional V

is constructed for the linear Volterra integrodifferential equation

Pt
x(t) = Ax(t) + J B(t-T)x(T)dT , t > to

x(t) = f(t), 0 < t < to .

This functional, and its derivative 4, is more general than previously

constructed ones and still retains desirable computational qualities; moreover,

it represents a natural generalization of the Liapunov function for ordinary

differential equations. The method of construction used suggests functionals

which are useful for more general equations.
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1. Introduction

For ordinary differential equations of the form x(t)=Ax(t), x(t) E IRn

it is well known that stability, perturbation and asymptotic properties can

T
be obtained through the use of Liapunov functionals of the form V=x Mx.

Indeed, if A is asymptotically stable a positive definite symmetric matrix

M can be obtained as the solution of the Liapunov algebraic equation

A TM + MA = -W for any positive definite matrix W; moreover, one has the
co T

familiar result that M = e We ds and that V Twx. Since V

and V are quadratic forms, it is easy to obtain an estimate of the type

V(t) < -26V(t) for some positive number 6 and therefore to obtain a

decay estimate via the Gronwall inequality. It is well known that this

estimate can be made arbitrarily close to the best possible estimate; further-

1/2 n
more, V1'2  is a norm equivalent to the Euclidian norm in IR . The simplicity,

computability and sharpness of these results are central to a number of useful

techniques in asymptotic and perturbation analysis of ordinary differential

equations.

In this paper we present a quadratic Liapunov functional for a linear

Volterra integrodifferential equation. Because the function space involved

is not IRn, it is not clear what quadratic functionals should be chosen that

will lead to sharp results yet remain easily computable. We follow the methodology

suggested by the ordinary differential equation case and choose what seems an

appropriate quadratic form V for the functional. Computation of the rate of

change of the functional along the solutions of the equation yields another

functional V; for the sake of computability and comparability, conditions are

imposed on V. which are then reflected in the form V. In the course of this

P. -, ..
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analysis an auxiliary equation, the natural generalization of the Liapunov

algebraic equation, arises and is analyzed. The end result is a theorem that

states the existence of Liapunov functionals of the desired form which give sharp

estimates of decay rates.

We consider the equation

(1.1) x(t) = A(t)x(t) + K(t,T)x(T)dT, t > to > 0, x(t) E Rn

with x(t) = f(t) for f E C[O,t0]. Miller [1] and others have shown the

desirability and usefulness of considering such equations with t0 > 0. Denoting

by x(.,t,,f) the solution of this equation with initial data f E C[O,t0 ], we

say that the equation is stable if for every t0 > 0 and c > 0 there exists

a 6 = 6(t0 ,E) > 0 such that jf(t)l < 6, 0 < t < t0 , implies Jx(t,t 0,f)l < C

for t > t0; the equation is said to be uniformly stable if it is stable and

6 = 6(E) can be chosen independent of t 0 > 0.

For the simpler equation

(1.2) x(t) Ax(t) + f B(t-T)x(T)dT, t > to > 0, x(t) E ln,

where A is a constant ratrix and the convolution kernel B is integrable,

characterizations of stability properties have been obtained by Miller [1] and

Grossman and Miller [2]. Seifert [3,41 and Grimmer and Seifert [5] have studied

this equation through the use of the very simple quadratic Liapunov functional

x TJx, under the assumption that A is asymptotically stable and that A TJ+JA

is negative definite. Burton [6,7] has studied equations (1.1) and (1.2) using

more general functionals, generally not quadratic ones, functionals which include

the history of the solution. The construction of quad-atic Liapunov functionals

for linear problems in Hilbert spaces has been pursued extensively by Infante
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and others [8,9,10,11]. This latter approach has motivated this investigation;

indeed the results here generalize those in [9]. In Section 2 we construct a

quadractic Liaputiov functional for equation (1.2); in Section 3 we exhibit a

functional which is useful for the study of equation (1.1) and present an example

of its use.

We wish to thank our colleague Professor John Mallet-Paret for some very

useful suggestions which have been incorporated in this paper.

• I
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2. Equations with Kernels of Convolution Type

Consider the equation

(2.1) J(t) = Ax(t) - B(t-T)x(T)dT, t > t0 > 0, x(t) E Rn ,

where A and B are n x n matrices with A constant and B locally integrable.

For each t > t0  we consider the pair (xt(O),xt) E iJ - LJ[-t,O], where

xt(O) = x(t+0) for -t < 6 < 0. Associated with this equation is the equation
(2.2)tt e6(t T) .

(2.2) y(t) = (A+6I)y(t) + J e B(t-T)y(..dT, t > t > 0,

where 6 ER, which is obtained from (2.1) through the change of variables
6t

y(t) = e x(t).

In the sequel, we shall use a representation of the solutions of (2.1)

similar to those given by Miller [12] and Hale [13]. Let S be the solution

of the matrix initial value problem

(2.3) S(t) = S(t)A + S(t-T)B(T)dT , t > 0
0

S(O) = I,

and let S(0)=O for 0 < 0. Then we have

Lena 2.1. Suppose x(t) is a solution of (2.1) for t > t0  Then if

t > t0  and p > 0

(2.4) x (O) = S(p)xt(O) + S(p-v-0)B(v)xt (0)dvd0
t~p t

The matrix function S6(t) = e 6tS(t) is, of course, related to equation (2.2).

The e':adratic forms to be used as candidates for Liapunov functionals

forequation (2.1) are of the type



-7-

V(tx (0),xt) = xT (0)Lx (0) + xT(0)H()x t ()de
t t t t f t t t

(2.5) 2T(0) N(O)xt()dO + JJxt(O)P(0, )xt()dqd0

where L and H(6), -t < 0 < 0, are symmetric positive definite matrices

and P(0,q) = PT(r, 0 ) for -t < 6,n < 0 . This quadratic form is natural for

our equation. The rate of change of V along the solutions of (2.1) for t > to

can be obtained, after a lengthy but straightforward computation, as

V(t,xt(0),x) = xT (0)[A TL + LA + 11(0) + N(0) + N T(0)] x (0)

_ o x0 T ( )H ' (O)xt(0)de
-tt

(2.6) + 2xT(0) [LB(-T) + A TN(r) - N'(Q) + P(0,r)lxt(Tl)drl
tO OTtTaP(0,n) fP(0, )

+ ffx ()B T(-o)N(rl) + NT(0)B(-n) - an ]xt(r))dTdO.
t -t ea1 t

This quadratic form is of the same type as (2.5). Unfortunately, at this level of

generality it is difficult, if not impossible, to obtain simple computable inequalities

between V and V.

In [3,4,5,6,7] this difficulty has led one to choose all or several of the

matrix functions H, N and P to be identically zero, yielding rather restrictive

results. The analogy to the case of the simple ordinary differential equation

0 Tx = Ax with Liapunov functional V = x Jx is to pick a particularly simple form

j = jT, say diagonal, and to insist that the form E = -(AT J + JA) be positive

definite. It is well known that, in general, the stability results thus obtained

for the solutions of the differential equation will be most restrictive. Our

viewpoint is the opposite one. We choose a particularly simple form for the

matrix E and thus obtain the matrix J. This is Precisely the viewpoint
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successfully employed in [9], and which we follow here. More specifically, we

endeavor to obtain a relationship between V and V of the simple form

V< -kV.

In the ordinary differential equation case, our viewpoint leads to an

analysis of the matrix equation ATJ + JA = -E. It is well known that if A

is asymptotically stable, for any s metric E this equation has a unique

symmetric solution J and that the mapping E -* J maps positive definite

symmetric matrices into (but not onto) positive definite symmetric matrices.

The following analysis is a generalization of this well known result to the

problem at hand.

Lemma 2.2. The matrix problem

Q,(a) = CQ(a) + f D(3)Q(U-)d , O > 0

T 0
(2.7) Q(00) Q r(_O), OL E R!0

CQ(O) + Q(O)CT + fo [D( )QT(T) + Q(W)DT( )]d = X,

where C is a constant matrix, X a symmetric constant matrix and D()e .E

L1 (o,-) n L2 (O,o) for some Y>0, has no more than one exponentially decaying

solution.

Proof: It suffices to prove that if X=O (2.7) has no nontrivial exponentially

decaying solutions. Suppose that Q is a solution with JQ(a)j < ke-VIa l

for some k,v > 0. Define Q(s) = ( )da . Then Q is analytic in s

in the strip IRe s! < V. Define H(a) for a EAR by

(2.8) 11(a) = Q'(a) - CQ(a) - f D()Q(a-B)dO;
i 00

it follows that H(OL) =0 for cx> 0 and that
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H(11) = -CQ(CA) - Q(cL)C T  f D(E)Q(- )d
(2 .9 ) 0( )- oQ(+.)D T( )d , a< 0.

Extend the matrix function D by D(U) = 0 for 6 < 0 and define IH(s)

and D(s) analogously to the definition of Q(s). It is easily seen that

is analytic and bounded in an open half-plane containing {sIRe s < 0) and that

D is analytic and bounded in an open half-plane containin8 {siRe s > 0} . From

(2.8) it follows that there is a strip about the imaginary axis in which

(2.9) (s) = A(s)Q(s), L(s) = SI C - (s) ,

and since Q(s) = QT(-s) it follows that H(s).T(-s) = A(s)HT(-s) in this strip.

S T
Consider the function F(s) = H(s)A (-s), which is analytic in an open half plane

containing {s IRes < 0 ; the relation F(s) = FT(-s) shows t. t F is an

entire function. Moreover, it is easily seen that there exist positive constants

c and c2  such that IF(s)j! < c + c2!sl for all s E C. By a familiar exten-

sion of Liouville's Theorem it follows that F(s) = F1 + sF2  for some complex

AT AT -1
matrices F1 and F Hence, H(s) = (F + sF2)(-sI C - DT(-s)) for

Re s < 0. From (2.7) and (2.9) it follows that H'(U) exists and decays exponen-

tially. Since lim s H(s) = H(0) and since X=0 implies H(0)=O, it follows
Res - A

that FI=F 2=0. Thus H(s) vanishes identically, which implies that Q(s) and

Q(t) must be zero, proving the lemma.

Let us now return to the construction of the Liapunov functional for

equation (2.1). For this purpose, assume that for the given A, B and 6

equation (2.2) is uniformly stable and that the kernel B(.)e 6. E L1 (0,) n L2 (01).

Let e > 0, and consider the problem,obviously related to equation (2.7), of finding
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a function Q within the class of exponentially decaying matrices defined by

QI(cl) = [AT + (6-C)l]Q() + 1 0 e(6" )6BT ()Q(u-S)d , U> 0

(2.10) Q(L) = QT(-L) a E R

A Q(O) + Q(0)A + foe (&-) [BT( )QT(B)+Q()B( I]d = W

for some fixed but arbitrary positive definite matrix W, to be selected in the

sequel. Lemma 2.2 above guarantees that, among exponentially decaying matrices,

there is at most one Q satisfying this equation. With S6_(t) = e(6- )tst,

where S is the solution of equation (2.3), it is easily checked that

(2.11) Q((X) = JS.u +cL)WS 6 -Ju)du, 0. E IR,

yields a solution of (2.10), hence the unique exponentially decaying solution of

this equation. It is this matrix function Q that allows us to construct a simple

Liapunov functional of the form (2.5). Indeed, in that equation, let the matrices

L, H(0), N(0) and P(0,r) be defined by

(2.12) L = Q(0) + M,

(2.13) H(0) = R e2 (6 -c)6

(2.14) N(6) = e (6-E)(v+e)Q(+ ))B(v)dv,

(2.1S) P(O,n) - f 7 e( 6 -)(rfl" 6+u+v)BT(v)Q(n-O +u-v)B(u)dudv,

where the positive semidefinite matrices M and R will be chosen later. A

lengthy computation yields that, with these matrices, equation (2.6) reduces to

(2.16) V(tx t(0),x t) = -2(6-c)V(t,xt(O),xt)

T t

* 2 xt(0) fMB(-0)xt(0)dO

.-.-t



Moreover, it is possible to expose the structure of the functional V under

these conditions. Substitution of equation (2.11) into equations (2.12)-(2.15)

shows, after some appropriate rearrangements, that the functional V is of the

form

(2.17) V(t,xt(O),xt) = XT(O)Mxt(0) + xT(0)Rxt0e2(6)6 d6

+ f (S(p)xt(O) + ft S(p-v-0)B(v)xt(e)dvde)TWe2(6
- E)p

0 -t

X (S(p)xt(0) + OS(p-v-)B(v)xt()dvd0)d,

which can be rewritten, on account of Lemma 2.1, as

Z 0 e2(6_EO

(2.18) V(t,xt (0), xt) = x(0)Mxt(0) + _txT(0)Rxt()e 0d6

+ xT (P)Wxt (P)e2(6- )PdP

Three points seem worthy of some emphasis at this point. The first is that

whereas equation (2.5) is a very general form, it is the particular restriction

of this form given by (2.1l)-(2.15) that yields the simple, manageable results

expressed by equations (2.16) and (2.18). The second remark is that the simplest

computable result for (2.16) is obtained for the case 6 -c = 0, M=R=0, in which

case the sign of V is strictly given by W; but in this case, all that one

can say is that V is positive and difficult to estimate. Finally, if in (2.18)

one chooses W=O , then one recovers the commonly used functionals for this

problem, but then note that (2.16) is difficult if not impossible to estimate

appropriately unless the matrix A is asymptotically stable.

The emphasis here is to obtain estimates through appropriate use of the
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matrices W, M and R. First note that with W > 0, it follows from (2.18) that

(2.19) V(t,xt(0).xt) > xT(0)N)xt(0) + xT(e)Rxt(a)e2( 6 -)ed .

Let now M (TNM)I/ 2  for E ii n , with the same notation for the corresponding

matrix norm. Now, let C >0 be given. Observe that

xT0 0 x(e)de _ 2[xt (0)1 M ( t02 1/2

X p, (e) 12 e (6 -E)edO)12

-tt f,2 IxI -2(6-ee)0 1/2

11 (B e,- l edde
(62Ih,1 r 0t[ (6e2

< I [ B(-)IN, e(6-C)''U L2(O,o) (CI xt(O)IM + c xt(Q)IM e -)dO)

for every c > 0. Hence, if we choose c = C/11 "lB()e (6- '_1L and

2

11 B(.)e ( 6 6 - 1

R = 2  M, it follows from the form of (2.18) that

21x T(e )  NB( -O)x t( )d el < 2 C 7(t,xt(OIx t )
-t

Thus with this choice of R, and M an arbitrary positive definite matrix,

(2.16) yields

V(t,xt(0),xt) < -2(6- 2 )V(t,xt(O) ,xt)

+ xT (0)[-W + R + (A T+(6-C)I)M + N(A+(6-C)I)Ix (0)
t t

so that W can be chosen as a positive definite matrix to yield

(2.20) V(t,xt(0),xt) < -2(6- 2e)V(t,x t(0),x t).
t t
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We may appeal to the definitions of Q, N, and P to show that

for some k > 0 independent of t,

(2.21) V(t,xt(0),xt) < k T (O)Mxt(0) + f xt(O)Rxt (O)e2 •-F)Od)-

Along with (2.191 this establishes just in what sense V measures the

size of the solution. For each fixed t, Vl1 2 (t,*,') is equivalent

to the norm 11'11t given by

2 i()2 + O 2e2(6-C)od
(2.22) II(xt(O)'xt)IIt = Jxt(0)2+ fIxt(O)l e(.O

It can be said that V1/2 t,. ,") is equivalent to the usual norm

on IR nx L2(-t,O); however, the constants describing this relationship

behave badly as t grows, whereas the constants relating V /2(t,.,') to

(2.22) are independent of t. The preceeding results are summarized in

the following

Theorem 2.1. Consider the equation x(t) = Ax(t) + B(t-T)x(T)dT and the
0

functional V given by (2.5). Suppose that 6 E JR is such that

B()e " E L1(o,-) n L2(0,-) and the equation y(t) = (A+6I)y(t)

+ fO e6(t-')B(t--)y(E)dT is uniformly stable. Then for any E > 0

there exist continuous matrices N, P, and H, with H positive definite,

a positive definite matrix L, and k 2> kI > 0 such that
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(2.23) k 1 (x O) 2 + Ixt ) 22(6=)edO)1/2 < V1 / 2 (t xt(0) xt)

< k 2(1x()2 + Ix<)I e2(6 d6) 1/2tt

and V < -2(6-2e)V.

If 6 > 0, the problem is exponentially asymptotically stable and

V yields the estimate Ixt(O)I < c 0e-(6-2e)(t-t0) for a constant c

depending on the initial data on [O,t 0 ] giving rise to x.

Remarks. The construction of a Liapunov functional for the equation

(2.24) x(t) = Ax(t) + B(t-T)x(c)d,
ft- r

where 0 < r < c and B E L2(O,r), is carried out in exactly the same

manner used above. The result is, in fact, more satisfactory. We regard

(2.24) as an autonomous evolution equation in the Hilbert space ]R x L2 (-r,O).

If the spectrum of the generator of the appropriate semigroup lies in the

closed half-plane Re s < 60, then for any e0 > 0 we can construct a

quadratic form V0  on In x L2 (-r,0) such that V0/ 2  is equivalent

to the usual norm and VO I 2(6 0 +E0 )V0 .

The approach taken here may be of more general use. The linearity

and appearance of the equation under consideration suggest a quadratic

Liapunov functional. Above, the attempt to obtain a certain appearance

in its derivative required that terms in (2.5)and (2.6)be comparable.

In general, a set of equations will arise from thc comparison of V to V, and

A1
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various tactics are available. For example, dropping the requirement

P(e,n) = P T (,,) leads to a functional which is useful for an equation

whose kernel is not of convolution type. This remark is pursued in the following

section.

3. More General Equations

We now consider the equation in JR
n

(3.1) i(t) = A(t)x(t) + f K(t,r)x(T)dc,

where A and K are continuous n x n matrices. The initial-value

problem to be considered has t0 . 0 and x = f on [O,t 0 ], f E C[0,to],

with (3.l)to hold in t > to. Again, for t > to we think of (xt(O),xt)

as lying in ex L2 (-t,O), and seek a quadratic Liapunov functional.

Burton [6,7] and others [3,4,5] have studied (3.1)by picturing it as a

perturbed version of an ordinary differential equation, and we do so as

well. The theorem presented in this section is said to be a Razumikhin-

type result because its proof relies only on the description of certain

solutions at the times those solutions leave sets which are of interest.

Before presenting the theorem, we recall a simple fact from linear algebra

which can be found, for example, in [14]. If D and E are real symmetric

n x n matrics with E positive definite, the equation det[D-E) = 0

has n real solutions X. They coincide with the eigenvalues of DE-

and

max X. =max zTDz

I < i n z O zTEz

show
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As before, for E > 0 and ; E IRn , we write 1 I E T E) , with the

same notation for the corresponding matrix norm . If G is an n X n

matrix with real eigenvalues, let Xmax(G) denote its largest eigenvalue.

Theorem 3.1. Suppose M is a positive definite n x n matrix and

let g(t) = Amax(A T(t) + MA(t)M -). Suppose that there exists U > 0

such that

(3.2) 2 f K(u,s)IM xp dsdu < 1-

for all t > 0. Then

(i) (3.1)is uniformly stable if there exists N < + such that

g ( c) d  <N whenever 0 < t < T < +00

(ii) (3.1)is stable if lim sup ( g(T)di < +co
T 0

Proof. Let

(3.3) Vl(t,x(t),x) = xT (t)Mx(t) - 2  xT(u)MK(u,s)exp x(s)dsdu.

Then along solutions of (3.1)

(3.4) Vl(tx(t),x) = x T(t)[AT(t)M + MA(t) - g(t)M]x(t) + g(t)Vl(tx(t),x).'

Thus V1 (t,x(t),x) < g(t)VI(t,x(t),x). So, for t > to,

to

.... . 5) '- , .. .. nl t' t) X < Vim f~ " ) ,f ex g (,c IdilFN
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where f is the initial data for x. If (3.1)were not uniformly

stable, we could find sequences as follows: ftk),1I tk > 0,

{fk }k=1' f k C C[O't k ] sup If k(t)IM < 1, and {T k~k1' T k2 tk' such

that IxkCYkIM> k and lxk(t)IM < k for t < Twhere Xk is the

solution of (27) arising from initial data f kon Otk] Foan

k > 1,

Vl(Tk xk(Tk),xk) >? Ixk(Tk)1I2

- 2 fTk fu Ixk(u) IMIK(u9s)IMexp (fT k ) IcksiMdsdu

!Ilxk (T k)IM (. 2 f 0 0~ IC(u,S)IM exp k 9) dsdu)

> cak.

Also,

+ 2 fk f lf(u) I 1u, s)M exp fk )Ifks)Mdsdu

I 1+2 f k fu I K(u,s)IM exp (fk g) dsdu

< 2 .

From (3.5)applied to these inequalities,

(3.6) a k 2 < (2-a)exp fTk g(T)dTr

k

*Since (3.6)must hold for every k, liii g(T)dr = 4o. This proves (i).
k-,ot
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To prove (ii) we follow the same argument except that all the tk

coincide at some t0 > 0. The same chains of inequalities lead us to

this version of (3.6):

ak2 _ 2-a)exp fTkg(t)dt.

it0

This implies that lim sup g(T)d = 4- and thus establishes (ii).
t-WO 0O

Remarks. The formulas in (3.3) and (3.4) resemble those describing V

and V in Section 2. In fact, V1  is motivated by the construction

there. If K(t,j) = B1 (t-i) and A(t) E A1 , then g(t) =- g,

and the final term in (3.3) takes the form

-2 f-- xT(O)MBl(0- ,)e-glxt(rI)dd

after a change of variables. It may be rewritten as

x 0 T l6)xt(r)drjdU

with Pl(,l) = -MBl(O-n)e-gl for -t < r < 0 < 0 and Pl(=,O) P T(6

Then

aPI(a ,r) aP (0,)

S + an 9P 1 (6gPlT,n )

so that V1  fits the term-by-term comparison scheme used before; the

kernel corresponding to N of Section 2 vanishes.

The simple appearance of V1  and V does not even depend on the

linearity of (3.1). However, we have not as yet thoroughly exploited this.

A ... A
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Functionals similar to V1  appear in Miller [12] for the case of a scalar

equation.

The functional V1  may be useful in analyzing equations whose kernels

do not decay exponentially, provided the equation can be viewed as a

perturbation of a suitably stable ordinary differential equation. The

following example illustrates this. Consider(3.1) where n = 2,

[K(t,t)t < k0 min(l, (t-T) -2), and

A (t ) = - l( t

- 1

where la(t)l < 2-0 farsome fixed "g0 > 0. We apply Theorem 3.1 with

M = I. Then g(t) = -2 + [a(t)l < - 0 . Moreover,

0

2 ff (u,s)J exp - 2 + JO(I)ld dsdu
0t 0a0 (tu) u f

< 2 0 e (fuIKu,s)lds du

jt -0o(t-u) -klo

< 4k e du <.4k 00 0

and the equation is uniformly stable if 4ko < 130

0.
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